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Abstract

This paper is a study of the optimal geometric layout of schemes for distributing hot water uniformly over an area.
Constrained are the amount of insulation material, the volume of all the pipes, and the amount of pipe wall material.
Unknown are the distribution of insulation over all the links of the network, and the configuration of the network itself.
The main focus is on how the geometric configuration may be selected in the pursuit of maximized global performance,
and how closely a non-optimal configuration performs to the highest level. Three global optimization criteria are
considered, and they all yield similar results with respect to the distribution of insulation: the maximization of the
temperature of the hot water received by the farthest user, the minimization of the total heat loss of the network, and
the maximization of the delivery temperature averaged over all the users. Three configurations are optimized: (a) an
area covered by a coiled stream, where all the users are aligned on the same stream, (b) a sequence of tree-shaped flows
on square areas in which each area construct is made up of four smaller area constructs, and (c) a sequence of tree-
shaped flows where each area construct is made up of two smaller area constructs. It is shown that the tree-shaped
designs (b) and (c) outperform consistently and significantly the coiled stream design (a). The tree designs obtained by
pairing (c) are better than the square tree constructs (b) and, in addition, they deliver water at the same temperature to
all the users spread over the territory. The optimized tree networks (b) and (c) approach the same high level of global
performance as their complexity increases. Optimized tree-shaped flow designs are robust. © 2001 Elsevier Science
Ltd. All rights reserved.

Keywords: Topology optimization; Tree networks; Dendritic; Constructal; Hot water distribution; Insulation; Flow resistance
minimization

1. Configuration optimized, not frozen

The usual method of modeling, analysis and opti-
mization in thermal engineering begins with assuming
the system configuration — its geometry, architecture,
components and manner in which the components are
connected. Next, the model that is conceived is a sim-
plified facsimile of the assumed system, while the anal-
ysis is the mathematical description of the model and its
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performance. The optimization is the simulation of
system operation under various conditions, and the
search for the operating conditions most favorable for
achieving maximum performance.

The search for optimal design is considerably more
challenging than optimizing the operation of a single
(assumed) configuration. In principle, one may con-
template a very large number of possible geometric
configurations, all the way to large numbers of duct
shapes and aspect ratios in every detail of a fluid flow
network. In practice, one may consider one or two
alternative configurations, optimize their performance
as in the preceding paragraph, and compare in the end
the optimized alternatives. Selecting the best among two
or three is to optimize the design. Important to the
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Nomenclature

A area (m?)

A; area covered by the construct of level
i (m?)

¢1,6,05,¢3,¢4  constants, Eqs. (9), (16), (17), (20)
and (23)

Cp specific heat at constant pressure
(J/kg K)

D diameter of round territory, Fig. 1
(m)

f friction factor

I,0L, I, 1, integrals, Egs. (7), (8), (13) and (15)

k thermal conductivity (W/m K)

L length (m)

Ly elemental length (m)

7] mass flow rate (kg/s)

7 initial mass flow rate (kg/s)

n exponent, Eq. (17)

N number of heat loss units, Eq. (5)

Ny elemental number of heat loss units,
Eq. (28)

q heat transfer rate (W)

q dimensionless heat transfer rate,
Eq. (19)

q heat transfer rate per unit length
(W/m)

7 inner radius of insulation (m)

o smallest r; size available (m)

0 outer radius of insulation (m)

R ratio of insulation annulus radii, ry/r;

S side of square territory, Fig. 1 (m)

T temperature (K)

T temperature averaged over all the
users (K)

T dimensionless temperature, Eq. (21)

To, Tena end user temperature (K)

Ty ambient temperature (K)

vV volume of insulation material (m?®)

14 dimensionless insulation volume,
Eqgs. (35) and (40)

Vs volume of pipe wall material (m?®)

We pumping power (W)

X longitudinal position (m)

z depth (m)

Greek symbols

p dimensionless notation, (7 /Vio)2

AP pressure drop (Pa)

0 dimensionless temperature, Eqs. (34)
and (39)

4 dimensionless longitudinal position,
x/L

p density (kg/ m’)

Subscripts

i level of construct, or assembly

max maximum

opt optimum

0,1,2,... elemental, first construct, second
construct, . ..(1)

subject of this paper is that comparing the optimized
candidates represents the optimization of geometric
configuration, which was allowed to vary.

Configuration (geometry, topology) is the chief un-
known and major challenge in design. The case-by-case
choices that we are accustomed to making are educated
guesses. Better designers make choices that work, i.e.,
configurations that have been tested. Experience and
longevity are useful when the needed system is en-
visioned as an assembly of already existing parts. Is this
the way to proceed in every application? It would be
useful to the designer to have access from the beginning
to the infinity of configurations that exist. Access means
freedom to contemplate them all, without constraints
based on past experience. It would also be useful to have
a strategy (route, guide) to which architectural features
lead to more promising configurations, and ultimately to
better optimized designs.

The objective of this paper is to illustrate this ap-
proach to flow system design, specifically, the view that
configuration itself is the unknown to be optimized [1].
We do this by considering the fundamental problem of
distributing a supply of hot water as uniformly as

possible over a given territory. This is a classical prob-
lem of civil engineering, with related subfields in piping
networks, sewage and water runoff, irrigation, steam
piping, etc. [2-5]. Recent studies of hot water distribu-
tion networks are [6-9]. For example, unlike in [§],
where the flow path geometry is assumed and frozen
throughout the remaining optimization process, in the
present study we reserve the freedom to change the
configuration, to “morph” it into better patterns en
route to higher levels of performance.

The present treatment of the hot water distribution
problem is restricted to its thermo-fluid aspects. Con-
siderations of insulation cost [10] and exergetic costs
associated with capital and flow irreversibilities [11] are
left for more advanced models that could be subjected to
the approach outlined in this article. The distribution of
hot water to users on a specified territory presents two
problems to the thermal designer: the fluid mechanics
problem of minimizing the pumping power, and the heat
transfer problem of minimizing the loss of heat from the
piping network. The water flow is from one point (the
source) to an area — the large number of users spread
uniformly over the area.
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The fluid mechanics problem has been addressed in
various forms, not only in engineering [1,2] but also in
physics and biology [12-23]. The addition of the heat
transfer problem in this paper is new, especially on the
background of the existing work on tree-shaped flows of
heat from point to area, or point to volume [1]. The
heat trees that have been optimized geometrically until
now were generated by the requirement to minimize the
global thermal resistance encountered by the point-
volume heat current. In the present heat transfer
problem the requirement is just the opposite. It is to
prevent the flow of heat from the branches of the piping
network to the area (the ‘ambient’). This is to be ac-
complished by using a specified (finite) amount of
thermal insulation for all the pipes, and by distributing
it optimally.

2. Elemental string of users

The area A is supplied with hot water by a stream of
flow rate /i and initial temperature 7;. The stream enters
the area from the outside, by crossing one of its
boundaries. The area is inhabited by a large number of
users, n = A/Ay, where 4, is the area element allocated
to a single user. Let 4y be a square with the side length
Ly, so that A constitutes a patch work of n squares of
size Ap. Each elemental square must receive an equal
share of the original stream of hot water, riz/n. As in all
the point-area tree flows considered previously [1], the
fundamental question is how to connect the elements so
that the ensemble (4) performs best.

We begin with the simple option of supplying a large
number of elements with the same stream, which is a
straight or curved line of length L (Fig. 1). The initial
(entering) flow rate is siy; The flow rate m(x) decreases
linearly to 72(0) = 0, because each user draws the same
share of sz per unit length x. It is assumed that the
number of elements is sufficiently large so that the
variation of 7z(x) may be treated as continuous

in(x) = . (1)

The temperature of the stream 7'(x), decreases from its
original temperature 7, (at x = L) because of the leakage
of heat to the ambient. We assume that the dominant
thermal resistance between the stream and the ambient is
posed by a cylindrical shell of thermal insulation
installed on the outside of the pipe that carries the
stream. In this limit the rate of heat loss per unit of pipe
length is [24]

, 2nk
q = m [T(x)

where 7, i, k and T, are the outer and inner radii of the
insulation, the thermal conductivity of the insulating

_L—-IL0I<— user I—zlr::'c"m
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N A

m(x)

| I
&y Ll

Fig. 1. String of users supplied by a single stream of hot water,
and round and square areas served by the string-shaped stream.

material, and the ambient temperature. Written for a
pipe length dx, the first law of thermodynamics requires
27k
1n(7‘0 / Vi)
The temperature distribution along the water stream (or

the pipe wall) is obtained by integrating Eq. (3) from
x=Lwhere T =T

%:exp(—N.[LW) 4)

where, by analogy with the number of heat transfer units
defined for heat exchangers, N is the “number of heat
loss units” of the L-long pipe system

e, dT = (T - T.) dx. (3)

N = 2mkL/ (micp). (5)

The temperature of the hot water delivered to the users
is T(x): according to Eq. (4), this is known as soon as the
distribution of thermal insulation is known, namely, the
ratio ry/r; as a function of x. The constraint is the total
amount of insulation wrapped around the pipe

V:n/OL(r(z)friz)dx. (6)

3. Optimal pipe radius

The geometry of the pipe and its insulation is de-
scribed completely by ry and r; (or ry/r; and r;) as
functions of x. The optimal distribution of pipe size
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[ri(x)] can be derived from the minimization of the
pumping power W required to drive m(x) through the
entire system. The pumping power varies as the product
m(dP/dx), while in fully rough turbulent flow the
pressure gradient is proportional to 7?/r7. In conclu-
sion, the pumping power per unit length varies as i /r?,
or x*/r?, and the objective is to minimize the integral

L .3
= [ % ™)
Jo 1

If the constraint is the pipe wall material, then the pipe
size must vary such that the integral

b= /:  d (8)

remains fixed. Specifically I, = V;,/(2nt), where V, is the
volume of the pipe-wall material, and ¢ is the wall
thickness, which is assumed considerably smaller than r;.
The same constraint applies when fixed is the volume of
excavated soil that is required for burying the pipe sys-
tem to a constant depth z. In that case I, scales as
Vi/(2z), where V; is the volume of excavated soil.

The variational calculus [25] solution to the problem
of minimizing /; subject to [, =constant is

r o= cx'/? 9)

for which the factor ¢, is provided by the actual pipe-
wall material constraint (8), namely, ¢; = (3/2)L/L*?.
The pipe that supplies the line of users must become
narrower in accelerated fashion as the water approaches
the last user (x = 0). We return to this aspect of flow
architecture in Section 5.

4. Optimal distribution of insulation

We now turn our attention to the optimal spreading
of a specified amount of insulating material, Eq. (6). We
consider three ways to pursue the optimization:

(i) Maximize the temperature of the hot water re-

ceived by the most disadvantaged user, the “end” us-

er, the farthest from the source, the one who receives
the coldest water,

Ty = T(x =0). (10)
(ii) Minimize the rate of heat leakage from the entire

pipe system,

q=/0Lq’dX- (11)

(iii) Maximize the hot-water temperature averaged
over all the users,

L
T:l/ Tdx. (12)
Ly

For option (i), we obtain an expression for T by setting
x =01n Eq. (4). To maximize 7; means to minimize the
integral that appears in the argument of the exponential
on the right side of Eq. (4),

1 dé
b= g (13)
where
E=x/L, R(&) =ro/r. (14)

The material constraint (6) in combination with the
optimized pipe radius (10) means that the integral con-
straint that must be satisfied by R(&) is

= [ -nea (15)

where I = V/(nL?c?). The function R that minimizes /;
subject to constant I is obtained implicitly by varia-
tional calculus,

¢=c)/(RInR). (16)

The factor ¢, is determined by using this R function into
the calculation of the actual (specified) amount of in-
sulating material, /;. Combining Egs. (15) and (16) we
obtain the function ¢;(/y) shown by the solid line in
Fig. 2. The factor ¢, is almost proportional to the
amount of insulation material, /,. This makes sense,
because ¢, is also proportional to RInR, cf. Eq. (16):
thicker insulations (larger R values) require more insu-
lation material.

According to Eq. (16), the radii ratio R = ry/r; in-
creases nearly as 1/¢ as the stream approaches the last
user (¢ — 0). Since 7; decreases as &2 in the same di-
rection, cf. Eq. (9), the outer radius of the insulation
varies nearly as /2. Furthermore, the integrand of the
material constraint (15) shows that in this design the
amount of insulation per unit of pipe length increases

variational calculus, Eq.(16)

assumed and optimized radii ratio
distribution, Eq.(17)

0.001 T T

1y = V/(ri?c}) 10

Fig. 2. The effect of the total amount of insulation material (/)
on the optimal distribution of insulation (c;).
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toward the 77 =0 end of the pipe. This behavior is
confirmed by Fig. 3, which shows a plot of Eq. (16) for
several amounts of insulation material (7).

Finally, the maximized end temperature is obtained
by substituting Eq. (16) into /3 and, finally, into Eq. (4)
written for x = 0. The chart constructed in Fig. 4(a)
shows that the maximized end temperature increases
monotonically as the number of heat transfer units of
the entire insulation (N) decreases, and as the total
amount of insulation (/;) increases. In summary, Fig. 4
reports the maximized performance of the entire system,
as a function of its two global constraints, material and
length (or flow residence time).

A more transparent alternative to the variational-
calculus route to Figs. 2-4(a), is to go back to Egs. (13)
and (15) and assume that the radii ratio depends on ¢ in
accordance with

InR = cy¢™, (17)
where ¢, and n are two constants. By substituting Eq.

(17) into Egs. (13) and (15) we obtain /3 = 1/(c,n) and
I, = function(c),n). Next, we eliminate ¢, numerically

100

variational calculus, Eq.(16)

assumed and optimized radii ratio
distribution, Eq.(17)

R=r,/1i
10 7

3

Fig. 3. The optimal ratio of insulation radii when the tem-
perature of the hot water delivered to the farthest user is
maximized.

variational calculus, Eq.(16)

— — assumed and optimized radii
ratio distribution, EQ.(17)

N =0.01

C)

between /5 and Iy, and the result is /5 = function(n, L),
where I, is a constant that accounts for the material
constraint. The exponent n accounts for the longitudinal
shape (profile) of layer of insulation. In summary, the
optimized R(¢) distribution (17) depends on the amount
of material (/;). This distribution can be expressed nu-
merically in the form of Eq. (16), by recalculating ¢, as a
function of 7, as shown by the dashed line in Fig. 2. The
assumed and optimized distribution, Eq. (10), leads to
essentially the same insulation geometry as the varia-
tional calculus route, Eq. (16).

Next, we determine numerically that /5 can be mini-
mized with respect to n for a given value of 4, so that the
end temperature is maximized. The optimal exponent
nopt(14) is reported in Fig. 4(b). This value can be worked
back through the analysis, to deduce the corresponding
¢, value (as plotted in Fig. 4(b)), and the minimized
objective integral, I3 min. The latter corresponds to the
maximized end temperature of the water stream, which
is obtained from Eq. (4): this result was plotted with
dashed line in Fig. 4(a), to show that this near-optimal
design performs in nearly the same manner as the opti-
mal design deduced based on variational calculus.

The corresponding near-optimal results for the dis-
tribution of R versus & have been drawn with dashed line
in Fig. 3. The optimal and near-optimal insulation
profiles are similar: R decreases and tends to 1 as & in-
creases. While making this comparison we found that
the function R(&, ¢;) of Eq. (16) is closely approximated
by the power-law expression

0.763
R [1 + 1,056(02/6)0'94] , (18)

This relation is accurate within 1.2% in the range
0.01 < £/c; < 100. The corresponding results for the
maximized end temperature of the water stream are
shown by dashed curves in Fig. 4(a).

Consider now option (ii), where the objective is the
minimization of the rate of heat loss from the entire
system. We perform the heat loss integral (11) by using
the ¢’ expression (2). The result can be expressed in di-
mensionless form as

0.17 flopt
€2, 0pt

0.013

0.001 T T 0.1

0.01 0.1 1 10
(b)

Fig. 4. The maximized and temperature as a function of the amount of insulation material (/;) and the heat transfer number N, and the
optimized constants for the assumed distribution of insulation, Eq. (17).
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27k(T, — T )L
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Once again, unknown is the insulation radii ratio R(&),
which must satisfy the insulation material constraint
(15). We were not able to optimize R(&) based on a
variational calculus formulation. Instead, we assumed
again functions of the class

InR = ¢3&", (20)

qg=

where ¢; and n are related via the constraint (15), such
that the integral (17) expresses the function g(n, N). The
method is the same as the one described after Eq. (17).
Minimizing ¢ with respect to n we found the radii ratio
distribution shown in Fig. 5.

For option (iii), the average water delivery tempera-
ture (12) is obtained by averaging the 7'(x) expression

4),

f:Z:E:/OI exp(—N/;nln?ﬁ)dé (1)

Using the functions (20) subject to the constraint (15),
we derive from the integral (19) the function f(n,a)
which can be maximized with respect to n. We find in
this way that the optimal distribution of insulation in
option (iii) is the same as in option (ii). Both sets of
results are represented by dashed lines in Fig. 5. There is
little difference between these results and the results
based on option (i) — the maximization of end-user water
temperature (solid lines in Fig. 5). Consequently, the
more complex heat and fluid flow structures optimized
in the remainder of the paper are based on option (i).

100
maximized end user water
N temperature, Eq.(16)

minimized heat loss and maximized
average temperature radii ratio
distribution, Egs.(19) and (21)

R=r,/1;
10 7

Fig. 5. The optimal ratio of insulation radii when the end user
temperature is maximized (solid line), the total heat loss is
minimized (dashed line) and the temperature averaged over all
the users is maximized (dashed line); N = 0.01.

5. Near-optimal pipe radius

The optimal shapes and distributions of insulation
derived in Sections 24 are useful for orientation. They
are based on simplest possible models, and, conse-
quently, they indicate trends and opportunities for op-
timization in actual engineering applications. The latter
demand more realistic models that account not only for
objective and constraints, but also for manufacturing
realities and the availability of pipe and insulation sizes.

A good example of how the preceding analysis may
be adapted to a more realistic model is recommended by
the optimal pipe shape derived in Eq. (9). Variational
calculus identified a pipe shape characterized by a pipe
radius that decreases smoothly all the way to zero at the
point where it reaches the last user. The ; — 0 behavior
is certainly unrealistic in pipe systems that must be
manufactured, purchased and installed. An alternative is
to account from the start for the fact that the smallest
pipe size must be finite

T (x = 0) = Tio, finite. (22)

The ensuing analysis continues to have the objective of
minimizing the pumping power integral 7;, Eq. (7),
subject to the wall material constraint I,, Eq. (8). The
resulting 7;(x) function that minimizes /;, however, rep-
resents a near-optimal design, because the assumed fi-
nite-ryy feature is foreign to the truly optimal solution,
Eq. (9).

We illustrate this step toward a more realistic model
by assuming that the pipe r;(x) is shaped as the frustum
of a cone

ri(x) = rip + cax. (23)

The factor ¢4 is dimensionless and represents the slope of
the cone generator. Although both ry and ¢4 may vary,
they must satisfy the wall material constraint (8), which
yields

Jl) rio | C4
_—_+_

=1ty constant. (24)

The total pumping power integral (7) becomes

! gde (T
I]L = /(; m = function <T,C4> . (25)

By eliminating r;/L between Eqs. (24) and (25) we ob-
tain /(L) as a function of ¢, and the I,/L? constant. This
function is then minimized with respect to ¢4, and the
results are ¢4 op = 1.25 /L% and I pinl = 0.0953(1, /L) .
The proportionality between cone angle (c40p) and wall
material (I/L?) means that in the limit of small ducts
(I,/L* — 0) the optimal cone frustum approaches a pipe
of constant radius. In agreement with expectations, the
minimized pumping power (/; mi,L) increases sharply as
the pipe size decreases (I,/L* — 0). It can be verified
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that these trends match quantitatively the trends ex-
hibited by the variational calculus solution in Section 3.

6. Users distributed uniformly over an area

In this section we turn our attention to the more
important and practical question of how to distribute a
hot-water stream to a population of users spread over an
area, A. One solution is to coil the optimized string of
users in such a way that the area is covered. Two
possibilities are sketched in the lower part of Fig. 1. The
string of length L and width L, can cover a disk-shaped
area of diameter D = [(4/m)L,L]"’, or a square-shaped
area of side S = (LOL)I/ 2. Are these the best ways to
allocate the hot water stream to the entire area?

The alternative is to introduce branches in the path of
the stream, and to distribute area elements to each
branch. We explore this alternative by starting with the
smallest (and therefore simplest) area element, and
continuing toward larger areas by assembling elements
into larger and larger constructs. One simple rule of
assembly is to use four constructs into the next, larger
assembly, Fig. 6. In this case each construct covers a
square area, in the sequence Ay=L3, A;=4L2,

et

A, =412,...,4; = 4L%. This assembly rule is ‘simple’
because the shape (square) of each construct is assumed,
not optimized. An alternative construction sequence is
described in Section 7.

The objective is to supply with hot water the users
distributed uniformly over 4;, and to accomplish this
task with minimal pumping power and a finite amount
of thermal insulation. The geometry of each pipe is
described by its length (a fraction or multiple of L),
inner radius wetted by the flow (r;), and ratio of insu-
lation radii (R =ro/r;). The pipe wall thickness is ne-
glected for the sake of simplicity. The subscripts 0, 1 and
2, indicate the elemental area, first construct, and sec-
ond construct, in accordance with the notation shown in
Fig. 6.

To minimize the pumping power requirement at the
elemental level (WO = 1myAPy/p) is to minimize the
pressure drop along the elemental duct of the length
Ly/2. Assuming as in the earlier sections that the flow is
fully-developed turbulent in the fully rough regime
(f=constant), we find that the pressure drop derived
from the definition of friction factor [2,24] is

S L2

APy =
2 3
2 pry,

(26)

Tend To, g
] <

_Ili Pend APy

2
Ao=14
(0) Elemental System .

T,,1610¢
&

AP,

1
I
Tend;Pend |
|
|

to

"0 ,

L _p b s | Tidmo
AP,

2mg,rj;

|
|
|
|

A =413

(1) First Construct

A, =4213

(2) Second Construct

Fig. 6. Sequence of square-shaped constructs containing tree-shaped streams of hot water.
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The corresponding heat-loss analysis based on Eq. (3),
with 719 = constant in place of 7, yields the temperature
drop from the inlet to the element (7;) to the user (7yuq)

Ten 7Too N
Tl (), )

T, — T, " InR,
where the number of heat loss units is based on el-
emental quantities

kL
N():n 0

e (28)
At the first-construct level there are two pipe sizes, one
central pipe of length (3/2)L, and radii »; and
Ry = (ro/ri);, and four elemental branches of length
(1/2)Ly and radii ryp and Ry = (r0/ri),. The flow rate is
4, through the root of the tree, and 7y through each
small branch. By writing the equivalent of Eq. (26) for
each segment of pipe without branches, we find that the
drop in pressure from the root to the most distant user
(the center of the farthest element) is

02
AP1:%m0L0(2+ : ) (29)

5 5
p o 2r

By analogy with the shaping of the water duct volume in
Section 3, the pressure drop AP, can be minimized by
selecting the ratio of pipe sizes r; /ryp subject to a water
volume constraint. If, as in Section 3, we constrain the
amount of duct wall material, and if we assume that the
duct thickness (7) is a constant independent of duct inner
radius, then the constraint means that the total wetted
surface is fixed

3

ELQI”“ + 2Lyr;p = constant. (30)
The same geometric relation applies when the constraint
refers to the amount of soil that must be excavated in
order to bury the pipe system to a constant depth. The
minimization of AP, subject to constraint (30) yields

(i’n/i’io)om =25 (31)

An alternative is to fix the total volume occupied by the
ducts

%Lorﬁ + 2Lyr;, = constant. (32)
This constraint also represents applications where the
thickness of each pipe is proportional to the pipe inner
radius, and where the total amount of wall material is
constrained. In such cases, the minimization of AP
subject to constraint (32) yields a slightly different op-
timal step in pipe size

(ril /riO)opt = 25/7’ (33)

The optimization of the geometry of the thermal in-
sulation shells wrapped around each pipe proceeds in

the same steps as the pressure-drop minimization. We
write a temperature drop expression of type (27) for
each segment of pipe without branches. We omit the
algebra and report only the overall temperature
drop from the root of the tree (77) to the temperature
(Tena) of the water stream delivered to the most distant
user

Tenda — Two No SNy
0 = e " e B . 34
o, P < InRy 41an) (34)

The dimensionless end temperature 0; depends on three
parameters, Ry, R; and Ny. The geometric parameters R,
and R, are related through the thermal insulation vol-
ume constraint

;(’%‘)2(1& — 1) +2(R: - 1)} (35)

_ 2
Vi = nLory,
Tio

for which (71 /ri) is a number furnished by Eq. (31) or
Eq. (33). Constraint (35) may be put into the dimen-
sionless form 7, (Ro, R;) by recognizing rj as the smallest
pipe size (Section 5) and defining the dimensionless in-
sulation volume ¥ = i/ (nr3 Ly).

The maximization of expression (34) with respect to
Ry and R, and subject to constraint (35) yields the op-
timal step change in radii ratio

(Rl 1an) (S)I/Z(m) (36)
RO In R() opt 6 i1 0P1‘

In view of the (ri]/rio)opt values listed in Egs. (31) and
(33), we conclude that R opr < Roopt, 1.€., the shell of the
central duct is relatively thin in comparison with the
shells of the elemental ducts. Relatively ‘thin’ means that
the shell thickness is small in comparison with the radius
of the same tube. Combining the function Ry o (Ro,opt) Of
Eq. (36) with the ¥;(Ro, R,) constraint (35) we obtain the
radii ratios Ry op(71) and Ry opi(¥1) displayed in Fig. 7(a).
The same figure shows the evolution of the step change
in geopletric form, (R, /Ro)opt, as the amount of insula-
tion 7] increases. Noteworthy is that the optimized
architecture of the distributed insulation is independent
of Ny. Once again, the value of (r;; /rio)opt’ or the choice
between constraints (30) and (32) has little effect on the
insulation geometry.

The maximized performance of the first construct is
measured by the 0, values obtained by substituting into
Eq. (34) the optimized geometry reported in Fig. 7(a).
The result is the function 0. (No,¥;) presented in
Fig. 7(b). The temperature of the water stream delivered
to the farthest user increases as the amount of insulation
increases, and as the thermal conductivity of the insu-
lating material (N,) decreases. These trends agree with
what we saw in Fig. 4(a) following the optimization of
the distribution of insulation in the string-shaped sys-
tem, Fig. 1.
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Fig. 7. The optimal ratios of insulation radii for the first construct (4;) shown in Fig. 6, and the maximized end temperature of the first

construct.

The optimization of the internal architecture of the
second construct (4,, Fig. 6) is performed by executing
the same steps as in the optimization of the first con-
struct. New is the larger size of the construct
(42 = 44,,m, = 161y) and the new central duct of
length 3Ly, inner radius rp and insulation radii ratio
Ry =ryy/rip. The optimized geometric features of the
first construct are retained.

In the fluid flow part of the problem we minimize the
overall pressure drop from the root of the fluid tree ()

to the farthest user (Pena), namely AP, = Py — Pyg. After
some algebra we obtain
f oLy (3/2 124 7
AP, = = ——t— 37
TR 7 162r, )’ (37)

where = (r; /rio)2 is shorthand for a numerical value
provided by Eq. (31) or Eq. (33). Recall that at the first-
construct level we used two alternative water-space
constraints, Eqs. (30) and (32), and the geometric opti-
mization results were quite similar, cf. Figs. 7(a) and (b).
For this reason we continue only with the constraint of
type (32) in which we fix the volume of all the ducts of
the 4, construct, namely nLo[3r% + 13 (6 + 8/B)] = con-
stant. By varying rp and r;; subject to this constant, we
minimize AP, and find the optimal relative size of the
central duct of the 4, construct

Ra opr,

(%)
R Jopt
R,

Ry opt

Iz zl
L

(\71)

N

Pty 1 2/ opt . .
0.1 1 10 100

G

(a) &

1/7

(’i> _ (L‘l/f;.?) = 2977, (38)
Til / opt 244+

Noteworthy is the inequality (rpp /m)Opl > (ry /rio)opt7

which states that the step change in duct size is more

abrupt at the second-construct level than at the first-

construct level.

The second part of the analysis of 4, is concerned
with the temperature (7,q) of the water stream received
by the farthest elemental user, and the maximization of
this temperature subject to the constrained total volume
of thermal insulation allocated to the 4, construct. The
analysis yields an expression for the dimensionless
overall temperature drop

Ten _Too
02 :dizol exp( 5N0/8>,

— 39
T — T InR, (39)
where 0,(Ny, ;) is a function that is available numeri-
cally based on the optimization of the A4, construct (cf.
Fig. 7(b)). The total insulation volume (7;) constraint
for the A, construct can be written as

- 2 o\’ ) ~
h=——=3(—) (R —1)+4n,

= = 40
NV%LQ tio ( )

where r,/ro is a numerical factor known from the
minimization of pressure, for example rip/rio = (ri2/ri1)

[Tend - TMJ
T2~ Teo Jnax
Ny =0.01

051 0.025

0.05,
0.1

0 T T //05/

(b) 0.1 1 10 ¥, 100

Fig. 8. The optimal ratios of insulation radii for the second construct (4,) shown in Fig. 6, and the maximized end temperature of the

second construct.
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(ri/ri0) = 2'/7 if the water-space constraint used is the
total volume of the ducts.

In summary, the end-temperature function
0, (No, I7I,R2) of Eq. (39) and the constraint 172(171,R2) of
Eq. (40) define 6, as a function of Ny, % and R,. By
maximizing 6, with respect to R, at constant N, and 75
we obtain the insulation radii ratio R, o, and maximized
end temperature reported in Figs. 8(a) and (b).

The relative superiority of the tree-shaped design
(Fig. 6) over the string design (Fig. 1) is documented in
Fig. 9. Here we show the dimensionless end tempera-
tures produced by the two optimized schemes on the
same basis — the same covered territory (4,) and the
same amount of insulation used in the entire construct
(7). Tt is clear that the tree-shaped design is superior, as
the end-user water temperature in the scheme of Fig. 6 is
consistently higher than in the coiled string arrangement
of Fig. 1. The two schemes have nearly the same per-

(Tena = Tm)l:.g,l
(Tend = Teo)gig 6

Fig. 9. Comparison between the maximized water stream
temperatures delivered to the farthest users in the string-shaped
construct of Fig. 1 and the tree-shaped first construct (4,) of
Fig. 6, for the same territory covered by the construct, and the
same total amount of insulation.
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|<—LO—>| $rio
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LO [——
AL AP
_12
Ap=13 Ap=213
(0) Elemental System (1) First Construct

formance in the limit of plentiful insulation material
(V2 > 10%) and high water flow rate (No < 1072).

7. Tree network generated by repetitive pairing

The sequence of square-shaped constructs used be-
ginning with Fig. 6 is an assumption, not a result of
optimization. To see whether a better rule of assembling
small constructs into larger constructs can be found,
consider the area doubling sequence shown in Fig. 10.
Each area construct is obtained by putting together two
constructs of the immediately smaller size. The area
supplied with hot water increases in the sequence
Ay = L3, Ay =202, A4y = 2212, ... A, =212, and the
shape of the area alternates between square and rec-
tangular. The elemental area that starts the sequence in
Fig. 10 is the same as in Fig. 6, namely 4. The second
construct of Fig. 14 covers the same area (4L2) as the
first construct of Fig. 6. One objective of the optimiza-
tion work reported in this section is to see which area
construction sequence serves the farthest (end) user of
the 4L territory better, Fig. 6 or Fig. 10?

For the sake of brevity, we report only the results of
the minimization of water flow resistance and loss of
heat to the ambient. The analysis follows step-by-step
the analysis detailed in the preceding section. For the
first construct of Fig. 10, in place of Egs. (31) and (33)
we obtain

(ril/ri())opt = 21/27 (41)
(Vil/Vio)opt = 23/77 (42)
which correspond to invoking the duct wall material

and, respectively, duct volume constraints. Egs. (34) and
(35) are replaced by

-
AP,

272
Ay =212

(2) Second Construct

Fig. 10. Sequence of area constructs obtained by pairing smaller constructs.
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Teng — T Ny Ny
g, = Lend = T S 4
L eXp< In R, 21nR,)’ (43)
pe h_L(mN e ey (44)
I_7tL0ri20_2 i ! 0 ’

The results for the optimal distribution of insulation and
maximized end-user water temperature are reported in
Figs. 11(a) and (b). The choice of constraint, i.e., Eq.
(41) vs Eq. (42), has a small effect, therefore we proceed
by using only the duct volume constraint.

At the second-construct level, in place of Eq. (38) we
obtain (ria/ri1) o = 23/7. The user temperature and total
insulation volume are

CTa— T N
0, = LT 0 exp ( 721nR2)’ (45)
o2 _ (e 2(R2 1) + 27, (46)
2T nLOriZO o Fio 2 -

The optimal distribution of the finite amount of insu-
lation is reported in Fig. 12(a), and the maximized user
water temperature in Fig. 12(b).

The numerical values and trends are similar to what
we saw earlier. More to the point, we can compare the

3
(fn/fio)opt
o2 — — —
237
2...
RO,opl
Rl,opl
R, opll
y 1 10
(a) 001 0.1 1 %,

(Tend - Tm]
Tl - Tm max

relative goodness of the doubling sequence (Fig. 10) vs
the sequence of square areas (Fig. 6). In Fig. 13 we show
the ratio of the maximized end temperatures of Figs.
7(b) and 12(b), with the observation that both figures
refer to the same construct size (4L3), and that the in-
sulation volume V; of Fig. 7(b) is set equal to V5 of Fig.
12(b). The total duct volume is the same in the two
designs sketched above the graph. Note also that ryy of
Fig. 7(b) is not the same as the rj of Fig. 12(b), and,
consequently, the dimensionless volumes 171>Fig_ 7y and
ﬁ]‘Fig. 12b) are not the same. The comparison shown in
Fig. 13 allows us to conclude that the tree structure
generated by repeated pairing (4,, Fig. 10) is superior to
the square structure (4;, Fig. 6). The temperature of the
hot water received by the end user in Fig. 10 (4,) is
consistently higher. The trends and the domain in which
the two schemes perform at nearly the same level are
similar to what we saw in the comparison between the
square tree and the coiled string designs in Fig. 9.

We pursued this comparison to an even higher level
of assembly — the construct of size 16L — on the basis of
the same mount of insulation material and total duct
volume. The two structures are illustrated in the upper
part of Fig. 14, with the observation that the tree gen-
erated by repeated pairing (44) is not shown in Fig. 10.
Once again, the tree design based on the sequence of

(rll/rlo)up\
S — — —
27

0.5

(b) 0.01

Fig. 11. The optimal ratios of insulation radii for the first construct (4;) shown in Fig. 10, and the maximized end temperature of the

first construct.
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Fig. 12. The optimal ratios of insulation radii for the second construct (4,) shown in Fig. 10, and the maximized end temperature of

the second construct.
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Fig. 13. Comparison between the maximized end-user water
temperature on the 4L2 construct, according to the construction
sequences of Figs. 6 and 10.
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Fig. 14. Comparison between the maximized end-user water
temperature on the 16L3 construct, according to the construc-
tion sequences of Figs. 6 and 10.

Fig. 10 outperforms the design based on Fig. 6. By
comparing Figs. 14 and 13 on the same basis (the same
Ly, total pipe volume, total amount of insulation), it can
be shown that the difference in the global performance
of the two types of trees (Fig. 6 and Fig. 10) diminishes
as each optimized tree structure becomes more complex.
The global performance becomes progressively less
sensitive to the actual layout of the tubes, provided that
the distributions of tube step sizes and shells of insula-

tion material have been optimized. When the optimized
tree structure becomes more complex it also becomes
more robust with respect to changes in the tree pattern.

It is worth pointing out another useful property of
the pairing sequence (Fig. 10): each user receives hot
water at the same temperature. The sz stream received
by each user passes through the same sequence of in-
sulated tubes. This is a very useful property, because in
other tree structures such as Fig. 6, the users located
closer to the root of the tree receive warmer streams than
the farther users. The tree designs of Fig. 10 deliver hot
water to the territory uniformly — uniformly in space and
in temperature.

We verified these conclusions by constructing Figs.
13 and 14 in an alternative way. The first way was to
assemble each construct (e.g. 4.2 in Fig. 13) by putting
together previously optimized smaller systems (constit-
uents). In this way the optimized features determined for
the smaller areas were preserved in the larger construct.
The alternative was to begin with the needed (large)
construct, and to let all the geometric parameters vary
freely. Along this route, we optimized every geometric
feature and arrived at exactly the same final structure as
during the first approach. These alternative calculations
of the optimized structures compared in Figs 13 and 14
verify the accuracy of the results presented in these
figures.

8. Concluding remarks

In this paper, we treated in some detail the basic
problem of distributing hot water to users spread over a
territory, when the amount of insulation and other
constraints are in place. The optimal distribution of
insulation over the many pipes of the network was
necessary step, but not the main focus of this study. The
main focus was on the topology of the water distribution
network — the layout of the pipes over the territory.
Main questions were how the layout can be deduced
from the objective of maximizing the global perfor-
mance of the hot water distribution system, and to what
extent the choice of layout influences global perfor-
mance.

In the first part of the study (Sections 2-5) we es-
tablished the method of analysis and optimization, by
starting with the simplest arrangement: a string of water
users attached to a single stream (Fig. 1). We maximized
the system performance in three ways (review options
(i)—(iii), Section 4), and found that the geometry of the
optimally distributed insulation material is practically
insensitive to the optimization criterion used (Fig. 5).
Along the way we showed that more accessible methods
of analysis (e.g., Eq. (17)) yield nearly the same results as
the method of varitional calculus. More realistic features
can be added to the model, as we demonstrated by
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introducing as constraint the smallest pipe size that is
available (Section 5).

The second part of the paper dealt with the spreading
of the hot water distribution system over a two-dimen-
sional territory. Here we used the constructal sequence
[1] of optimizing smaller systems, and assembling them
into progressively larger systems (Figs. 6 and 10). In
each tree structure we optimized the distribution of in-
sulation by maximizing the temperature of the water
received by the farthest user. We found that the designs
generated by the construction sequence in which each
structure contains two structures of the preceding size
(Fig. 10) perform consistently better than the designs
produced by the sequence of squares (Fig. 6). In addi-
tion, the designs generated according to Fig. 10 are su-
perior because they deliver water at the same
temperature to all the users.

The difference in performance between one type of
tree structure over another decreases as the complexity
of the structure increases. It is as if “any tree will do” if
it is large and complex enough, and if its link dimensions
and insulation have been optimized. Tree-shaped dis-
tribution systems perform consistently and substantially
better than string-shaped or coil-shaped systems (Fig. 9).
The robustness of the tree-flow performance to differ-
ences in internal layout (Fig. 6 vs Fig. 10) is important
because it simplifies the search for a nearly-optimal
layout, and because a constructed system will function
at near-optimal levels when its operating conditions drift
from the values for which the system was optimized.

The chief conclusion of this study is that the use of
geometric form (shape, structure) is an effective route to
achieving high levels of global performance under con-
straints. The brute force approach of delivering hot
water by using large amounts of insulation and flow rate
(small N) is not economical. Much faster progress to-
ward the goal of global performance maximization can
be made by recognizing and treating the topology of the
flow system as the main unknown of the problem.
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